201853A87H(K)-388H(XK) 2#:BFAZEIYHE BILKS 188

- » W
L

JaSST'18 Tokyo : Japan Symposium on Software Testing in Tokyo 2018

Google

Advances in Continuous Integration
Testing @Google

By: John Micco -

BiEgE Y3y - 3Ivd

Testing Scale at Google

Google

4.2 million individual tests running continuously
o Testing runs before and after code submission

150 million test executions / day (averaging 35 runs / test / day)
Distributed using internal version of bazel.io to a large compute farm
Almost all testing is automated - no time for Quality Assurance
13,000+ individual project teams - all submitting to one branch
Drives continuous delivery for Google

99% of all test executions pass

» ’
]

9

'rx"}’

¢

TESTINGIWORKS

Debugging

Testing Culture @ Google &

e ~11 Years of testing culture promoting hand-curated automated testing
o Testing on the toilet and Google testing blog started in 2007
GTAC conference since 2006 to share best practices across the industry
First internal awards for unit testing were in 2003!
Part of our new hire orientation program

O
e SETI role

o Usually 1-2 SETI engineers / 8-10 person team
o Develop test infrastructure to enable testing

e Engineers are expected to write automated tests for their submissions

e Limited experimentation with model-based / automated testing
o Fuzzing, Ul waltkthroughs, Mutation testing, etc.
o Not a large fraction of overall testing

Regression Test Selection (RTS)

Regression Test Selection (RTS)

Current Regression Test Selection (RTS)

Postsubmit testing

e Continuously runs 4.5M tests as changes are submitted

o Atestis affected iff a file being changed is present in the transitive closure
of the test dependencies. (Regression Test Selection)

o [Each test runs in 1.5 distinct flag combinations (on average)
o Build and run tests concurrently on distributed backend.
o Runs as often as capacity allows

o Records the pass / fail result for each test in a database

o [Each run is uniquely identified by the test + flags + change
o We have 2 years of results for all tests

o And accurate information about what was changed

Google See: prior deck about Google Cl System, See this paper about piper and CLs

Cut milestone
at this CL

Milestone Scheduling

—o 9000 00— 0 0 0 0
—eo 9o 000 o0 o oo o o
oo . oo oo o
oo . oo oo o—o
oo oo .
oo oo
. .

19s 10b.1e] 1s8] pajoaly

—— > Change Lists ———

Google

Milestone Scheduling

A

A

Affected Test Target set

Google Change Lists

v

Milestone Scheduling

A

A

Affected Test Target set

Google Change Lists

v

10

Milestone Scheduling

A

A

Affected Test Target set

Google Change Lists

v

11

Milestone Scheduling

A

A

Affected Test Target set

Google Change Lists

v

12

Reducing Costs

e RTS based on declared dependencies is problematic!

O

O
O
O

Google

A small number of core changes impact everything

Milestone Scheduling ends up running all tests

Distant dependencies don't often find transitions

99.8% of all test executions do not transition

m A perfect algorithm would only schedule the 0.2%
of tests that do transition

There must be something in between 99.8% and

0.2% that will find most faults

RTS Affected Target Counts Frequency

Affected Targets Count

1000000

100000

Affected Targets

Google

10000

1000

100

10

1

0

25

50

Percentile

75

100

== Affected Targets

Stats:

o Median 38 tests!

o 90th percentile 2,604

o 95th perentile 4,702

o 99th percentile 55,730
A tiny number of CLs is causing over-
scheduling
It only takes 1 CL on the long tail to
force a milestone to run all tests

Test Results

OTHER
8.1%

FLAKY
10.5%

FAILED
46.5%

FAILED_TO_BUILD
34.8%

PASSED

NOTE: Presubmit testing makes post-submit failures relatively rare - but we still spend 50% of testing resources on post-submit testing.

Google

Project Status and Groupings

e Tests are grouped into "projects” that include all relevant tests needed to
release a service

e This allows teams to release when unrelated tests are failing

e Current system is conservative
o Gives a green signal iff all affected tests pass
o 100% confidence that a failing test was not missed

e \We require a definitive result for all affected tests (selected by RTS)
o Projects only receive a status on milestones

o We say that projects are "inconclusive" between milestones - when they get affected
o Since milestones are far apart projects are frequently inconclusive

Google

Project Status and Groupings

CL5
CL6
CL7
CL100 - Milest

Greenish Service

e Reducing over-scheduling means < 100% confidence
o Not all tests will be run!
o Milestones will be far apart
e Need a signal for release
e Introduce "Greenish" service
o Predicts likelihood that skipped tests will pass
o Provides a probability rather than certainty of green

Google

Predicted confidence

Greenish

Ads gmail Sycial
0000000COOOO 000000 %% (@ 00000 OQOCOOOOYNO CL5
000085000000 00O0COCKCONOOGS 98% 000000 00C0O0QOCOOOOO 99% CL6
2% 00000000 000)00000000 95% 90% CL7
Still failing

@’ @’ CL100 - Milestone

New Scheduling Algorithms

e Skip milestones and schedule tests with highest
likelihood to find transitions

e QOccasional milestones will find transitions missed by
opportunistic scheduling

e (Goal: Find all transitions using vastly reduced resources

e Decrease time to find transitions

Google

Safe ReSU ItS Skipping this target would not miss a transition

Time —

Changelist CL1 CL2
Target Result

Safety - Safe
Transition - P->P
* = affected

Google Confidential + Proprietary

Safe ReSU ItS Skipping this target would not miss a transition

Time —

Changelist CL1 CL2
Target Result

Safety - Safe
Transition - F->F
* = affected

GOOgle Confidential + Proprietary

Safe ReSU ItS Skipping this target would not miss a transition

Time —

Google

Changelist CL1 CL2 CL3
Target Result *

Safety - Safe Safe
Transition - P->P P->P
* = affected

Confidential + Proprietary

Safe ReSU ItS Skipping this target would not miss a transition

Time —

Google

Changelist CL1 CL2 CL3
Target Result *

Safety - Safe Safe
Transition - F->F F->F
* = affected

Confidential + Proprietary

U N Safe ReS u ItS Skipping this target would definitely miss a transition

Time —

Changelist CL1 CL2
Target Result

Safety - Unsafe
Transition - P->F

* = affected

GOOgle Confidential + Proprietary

U N Safe ReS u ItS Skipping this target would definitely miss a transition

Time —

Changelist CL1 CL2
Target Result

Safety - Unsafe
Transition - F->P

* = affected

GOOgle Confidential + Proprietary

M aybe U N Safe ReS u ItS Skipping this target might miss a transition

Time —

Changelist CL1 CL2 CL3

Target Result *

Safety - Maybe unsafe Maybe unsafe
Transition - P->F P->F

* = affected

GOOgle Confidential + Proprietary

M aybe U N Safe ReS u ItS Skipping this target might miss a transition

Time —

Changelist CL1 CL2 CL3

Target Result *

Safety - Maybe unsafe Maybe unsafe
Transition - F->P F->P

* = affected

GOOgle Confidential + Proprietary

Skipping milestones: <1% test targets detect breakages

B Transition

_.0_5 [| || = H -
7
©
% | — - - =
l—
D -
o) = -
- -
yo] | - -
Q
O -
@
= - -
<

- m -

| — = -

Google Change Lists

Skipping milestones: breakages imply cuprit finding

B Transition
o o
& o
P o
*— ® e

o ®

o o—
® ® °

@ culprit
Change Lists

Affected Test Target set

Google

Skipping milestones: culprits detected and found

- O<«—m o
o
(7]
e -
5 ®
|_
= Ps o
ke o— ® ®
b O« = ® o
g | °=
<
&= ™ o
G<—m o o
Change Lists

Google

Skipping milestones: culprits detected and found

® Culprit detected & found

o |- o
(D)
(/)]
©
> - -
l_
= P o
ke o— o ®
- |- o ®
9
O | -
(O]
4=
<

® ™= o

- o ®

Google Change Lists

Skipping milestones: culprits detected and found

™ Culprit detected & found

Affected Test Target set
| |
i
i i
H |

v

Google Change Lists

Skipping milestones: culprits detected and found

™ Culprit detected & found

Affected Test Target set
| |
i
i i
i
i

v

Google Change Lists

Skipping milestones

™ Culprit detected & found

- -

= - - - @ P

n

©

% [- - - -

|_

? - “

IE [] - [] i

o - - @ @

0]

© -

O]

RS - -

<

- - s
- - -
-

Google Change Lists

Skipping milestones

-
e |- -
)
n
g -
5 -
= -
D
o) - -
- - -
B -
3 -
()
2 - -
<
- -
- - ®
Google Change Lists

Skipping milestones: cuprit finding, acceptance tuning

Affected Test Target set

Google

v

Change Lists

Skipping milestones: cuprit finding, acceptance tuning

Affected Test Target set

Google

v

Change Lists

Evaluating Strategies

e Goals
o Low testing cost
o Low time to find a transition
o Low risk of missing transitions
e Exclude Flakes using 3 different exclusion mechanisms
e Measure "Safety"
o Skipping a test is "safe" if it did not transition
o 100% safety means all transitions are found
e Evaluate new strategies against historical record
o Allows Fast algorithm iteration time
o Must excludes flaky test failures

Google

Offline Safety Evaluation

Safe Changelists

% of total CLs

GOUgle

100

98

96

94

92

90

[J
== Random
j == QOptimistic
== Pessimistic
[
[J

25 50 75 100

Skip Rate (%)

91% of changes do not
cause a transition - we
could safefly skip all
testing for them!

Of the remainder, a
perfect algorithm could
skip more than 98% of
the currently selected
tests and find all
transitions

Random is a curve due
to probability
distributions and large
impact changes

Flaky Tests

e Test Flakiness is a huge problem
e Flakiness is a test that is observed to both Pass and Fail with the same code
o :
e Almost 16% of our 4.2M tests have some level of flakiness
e Flaky failures frequently block and delay releases
e Developers ignore flaky tests when submitting - sometimes incorrectly
o :
e \We spend between 2 and 16% of our compute resources re-running flaky tests
uuuuuuuuuuup--4MHMMMMMuuuluuuulezauuuuzmzzlmmzzmﬂzmzaznzznnnﬂlllznaazzﬂlml!z
[“|-|[-[F[F[FI-F HA- A aEaBEA |- 8- AaaaaaEas |- - Aaasss - BaaE /|- B8 F OeaEaE F Eaaa - aa8 /|- aaaass|
IB!!!HIEGIII- IIEIEEH!!HH!!H!I!!EjHEIE!IIIIEEBEIIIBEIIBEIIBEBBBEEIEEBEEBEE [-][-]
G- TG IR TR - -) [-I[-JE(-]-][- Ak [- FAEEE - & - @4 - EE
[P [[] [F[Fl]]]]|/ [/]] <[]]|]-]-]-a]-a- aaaam -I\-II-II-II-JI-II-IE|E]E\E|ElE!E\Z!EJEEE] (=)l]- - Tea--(-I-JEA e -]
[BEas - BaaaEaEs | EBBDBBEEIIBBEGEBEL; UBEIE GGG RG]
B[A - I - -1 - [EA A A Ea - EA - & (- |Ea (- JEa (- [-| - 3 [-[EAtArara - Eararal- - -4
- I - T BaEn-|- aas
Q|- [BE []Flx[x[F| |8 [|/]B][]]|F[-][]F]-[]]-|B]] EBEB -1
[-J-][-JEAKA[- [EACAraAraArAEa - | - |- JEa(-) - G-] -] - (- 1ea(- - JE3- (- (- 1Ed [7]-]
GGG G TR TR L I - JRa- JEa - -1 <]
/||| ||| | |||]| [F] B]]-|][]]]-]]BE]F] BB!HIEB -]
-] - A A A e - V-0 -0 (- - EAEaEal - [- Eaea (- EE [- -1 e
(- JEAkal- Eal- - eal- - @ - -0 ea e edeal - - - 1- - e EAEEE-[-E-E
[7[Fl-l-| -] 8| aaaaaaaaaaaaaaaaaaE| /|| - EE- -]
()1 - A A - (e - | - |- (- A (- A - E(- [EE - 1E EAEEE(- |- e Ea(-]
BF F s |- A aaaaaEaaaaE| 2 E 7 1 !l [- |- [EAEAEal- - 1Ea(- |- 1ea-]
AuEEEEEEEG - - EE - E(- - EEE - EEE
z Z 1] Eﬂ! [- @R @@ -]
-] EJ k(- (-] Bl E [][]]]]
8|] |][]/] /][] e a e aaaaaaaaas| BB []]
(- I(-Jea- - (-1 A Attt EA EA ka -) - [EA EAEAEA kA a - k4 - |- JEaka| - | - Fararararararararararar
CIGIEI - G e e G I a1 I - A A - - A - e 101 TE - IIB!!BB!!H!!!!!
/||]]|] -]] |- B8] 8/ aaan- | aaaan - aaaass [-1-]
GOOgle BRI G O - - - e e - - -) JEa |- JEa -) - [eAeA kA Eatd - |- Fata A tAra A tata - k4 EAta A A A ra At - fatarara At
(eIl el e - - - Jea A - L)L))= - Jea - - |- [eaea ea kA - ea (-) - Jeal- Vea - (- (- JeaC- - (- - e - e - - L e e - - -] e

Analysis of Test Results at Google

e Analysis of a large sample of tests (1 month) showed:

©)

O O O O O

©)

mm

84% of transitions from Pass -> Fail are from "flaky" tests 0 1518 FLATJES]

Only 1.23% of tests ever found a breakage

Frequently changed files more likely to cause a breakage

3 or more developers changing a file is more likely to cause a breakage
Changes "closer" in the dependency graph more likely to cause a breakage
Certain people / automation more likely to cause breakages (oops!)

Certain languages more likely to cause breakages (sorry)

e See our accepted Paper at ICSE 2017

Google

See: prior deck about Google Cl System, See this paper about piper and CLs

Flaky test impact on project health

e Many tests need to be aggregated to qualify a project
e Probability of flake aggregates as well
e Flakes

o Consume developer time investigating

o Delay project releases

o Waste compute resources re-running to confirm

Flakes

.wsm'ma 'Tﬂtlnglcwm'
(e} History Faded / Broken = |
Showing 12 of 1166 targets: Failed / Broken Remove all filter

Passec Passec Passed: 273

ests:

N A

II

Y
I
I\[
I

I I‘\\\\
I I\
\I“'.\\\\\
I
IIIIIIIIIIII

IIIIIIII 0 I :
A

=
CIE
a -
B
g -
CIE
IR
g
B
g
B -

<

Google

Percentage of resources spent re-running flakes

% of ffoegéihgurs wfpdstisobnsitsgpent on retiynyflkkjesists

1005 — Regression

= Percentage

9.00%

6.00%

3.00%

0.00%
Feb'16 Mar Apr May Jun Jul Aug Sep Oct

Google

Sources of Flakiness

e Factors that cause flakes
m Test case factors
e \Waits for resource

e sleep()
e \Webdriver test
e Ul test

m Code being tested
e Multi-threaded

m Execution environment/flags
e Chrome
e Android

Google see: hiips:

Android

Ul

Multi-threaded

45

Flakes are Inevitable

e Continual rate of 1.5% of test executions reporting a "flaky" result
e Despite large effort to identify and remove flakiness
o Targeted "fixits" [HII@BHEISUBMITEB WL TON

o Continual pressure on flakes ~
e Observed insertion rate is about the same as fix rate

UNTIL ALL THE FLAKES PASS

Conclusion: Testing systems must be able to deal with a certain level of flakiness.
Preferably minimizing the cost to developers

Google

Flaky Test Infrastructure

e We re-run test failure transitions (10x) to verify flakiness

(@)

O

Google

If we observe a pass the test was flaky
Keep a database and web Ul for "known" flaky tests

flakiness help | file a bug | feedback | 20% projects

Search for a tap project, guitar project, test target or test method...
tap project 4 tap max days: 5 m

The flakiness data comes from TAP flake detection mechanism. It inciudes data from tests running on TAF, guitar and tests from build rules annotated with fiaky=1. However, it does not include flaky compilation failures. The information displayed is the test method failure from tests that failed due to
fiakiness.

Flaky test executions from TAP project tap

Clustering: exact match default aggressive m

Filter: showall hide test tagged as flaky

dWritePendingResultsAndTestRunReq
mTests (sponge) ran on 2016-10-31.

javatests/com/google/testing/tap/testbroker/server/buildenq
38 similar flakes from different targets [o)

java.lang.AssertionError: Failed test because ChangelistNotifications is not empty after 30 seconds.
==== TASK ==s=s=s=== payload (ChangelistNotification) ===
changelist: 40000021

(stacktrace truncated)

Finding Flakes using the historical record

e 84% of test transitions are due to flakiness
e Concentrated in 16% of the total test pool
e Conclusion: Tests with more transitions are flaky

|H HHH TEST 1
I I TEST 2

< 5HOURPERIOD

GOOgle Confidential + Proprietary

Number of Edges Per Target by % Flakes/NotFlakes

||

100%
80%
60%
40%
20%

Percentage Flakes vs. Not Flakes

R

181 201 221 242 262 284 310 342 376 403 440 484 574 705 816
71 191 211 232 262 272 296 324 356 392 416 463 517 658 756

Number of Edges

Number of Transitions Per Target by % Flakes/NotFlakes

1 21 41 61 81 101 121 141 161 181 201 221 242 262 284 310 342 376 403 440 484 574 705 816
"1 31 5 71 91 1M1 131 1561 171 191 211 232 252 272 296 324 356 392 416 463 517 658 756

%

Number of Transitions

Take away message: Test targets with more transitions in their history are more likely to be flakes.
(Number of edges = signal for flake detection)

Flakes Tutorial

Using Google BigQuery against the public data set from our 2016 paper
e Reproduce some of our results

o Techniques to identify flaky tests using queries

o Hands on!
e Hope to see you there!

e NOTE: A Google account is required for the hands-on portion
o Send your Google account to john.micco@gmail.com before the lab
if possible!

Q&A

For more information:

e Google Testing Blog on Cl system
e Youtube Video of Previous Talk on Cl at Google

e Flaky Tests and How We Mitigate Them

e Why Google Stores Billions of Lines of Code in a Single Repo

e GTAC 2016 Flaky Tests Presentation

e (ICSE 2017)"
Who Broke the Build? Automatically Identifying Changes That Induce Test Failures In Continuous
Integration at Google Scale" by Celal Ziftci and Jim Reardon

e (ICSE 2017) “Taming Google-Scale Continuous Testing,” by Atif Memon, Zebao Gao, Bao Nguyen,
Sanjeev Dhanda, Eric Nickell, Rob Siemborski and John Micco

Google

