

Advances in Continuous Integration Testing @Google

By: John Micco - jmicco@google.com

投稿者:ジョン・ミッコ

Testing Scale at Google

- 4.2 million individual tests running continuously
 - Testing runs before and after code submission
- 150 million test executions / day (averaging 35 runs / test / day)
- Distributed using internal version of <u>bazel.io</u> to a large compute farm
- Almost all testing is automated no time for Quality Assurance
- 13,000+ individual project teams all submitting to one <u>branch</u>
- Drives continuous delivery for Google
- 99% of all test executions pass

Testing Culture @ Google

- ~11 Years of testing culture promoting hand-curated automated testing
 - Testing on the toilet and Google testing blog started in 2007
 - o GTAC conference since 2006 to share best practices across the industry
 - First internal awards for unit testing were in 2003!
 - o Part of our new hire orientation program
- SETI role
 - Usually 1-2 SETI engineers / 8-10 person team
 - Develop test infrastructure to enable testing
- Engineers are expected to write automated tests for their submissions
- Limited experimentation with model-based / automated testing
 - Fuzzing, UI waltkthroughs, Mutation testing, etc.
 - Not a large fraction of overall testing

Regression Test Selection (RTS)

Regression Test Selection (RTS)

Current Regression Test Selection (RTS)

Postsubmit testing

- Continuously runs 4.5M tests as changes are submitted
 - A test is affected iff a file being changed is present in the transitive closure of the test dependencies. (Regression Test Selection)
 - Each test runs in 1.5 distinct flag combinations (on average)
 - Build and run tests concurrently on distributed backend.
 - Runs as often as capacity allows
- Records the pass / fail result for each test in a database
 - Each run is uniquely identified by the test + flags + change
 - We have 2 years of results for all tests
 - And accurate information about what was changed

Milestone Scheduling

Milestone Scheduling

Milestone Scheduling

Reducing Costs

- RTS based on declared dependencies is problematic!
 - A small number of core changes impact everything
 - Milestone Scheduling ends up running all tests
 - Distant dependencies <u>don't often</u> find transitions
 - 99.8% of all test executions do not transition
 - A perfect algorithm would only schedule the 0.2% of tests that do transition
 - There must be something in between 99.8% and
 0.2% that will find most faults

RTS Affected Target Counts Frequency

Affected Targets Count

Test Results

NOTE: Presubmit testing makes post-submit failures relatively rare - but we still spend 50% of testing resources on post-submit testing. Google

Project Status and Groupings

- Tests are grouped into "projects" that include all relevant tests needed to release a service
- This allows teams to release when unrelated tests are failing
- Current system is conservative
 - Gives a green signal iff all affected tests pass
 - 100% confidence that a failing test was not missed
- We require a definitive result for all affected tests (selected by RTS)
 - Projects only receive a status on milestones
 - We say that projects are "inconclusive" between milestones when they get affected
 - Since milestones are far apart projects are frequently inconclusive

Project Status and Groupings

Greenish Service

- Reducing over-scheduling means < 100% confidence
 - Not all tests will be run!
 - Milestones will be far apart
- Need a signal for release
- Introduce "Greenish" service
 - Predicts likelihood that skipped tests will pass
 - Provides a probability rather than certainty of green

New Scheduling Algorithms

- Skip milestones and schedule tests with highest likelihood to find transitions
- Occasional milestones will find transitions missed by opportunistic scheduling
- Goal: Find all transitions using vastly reduced resources
- Decrease time to find transitions

Time		
Changelist	CL1	CL2
Target Result	Р	Р
Safety	-	Safe
Transition	_	P->P

^{* =} affected

Time →		
Changelist	CL1	CL2
Target Result	F	F
Safety	-	Safe

F->F

Transition

^{* =} affected

Time →	Т	ime		\rightarrow
--------	---	-----	--	---------------

Changelist	CL1	CL2	CL3
Target Result	Р	*	Р
Safety	-	Safe	Safe
Transition	-	P->P	P->P

^{* =} affected

-			
- 11	me	\longrightarrow	Þ

Changelist	CL1	CL2	CL3
Target Result	F	*	F
Safety	-	Safe	Safe
Transition	_	F->F	F->F

^{* =} affected

Time ——		
Changelist	CL1	CL2
Target Result	Р	F
Safety	-	Unsafe
Transition	-	P->F

^{* =} affected

Time ———		
Changelist	CL1	CL2
Target Result	F	Р
Safety	-	Unsafe
Transition	-	F->P

^{* =} affected

Maybe Unsafe Results skipping this target might miss a transition

T:	
lime	$\overline{}$
111110	

Changelist	CL1	CL2	CL3
Target Result	Р	*	F
Safety	-	Maybe unsafe	Maybe unsafe
Transition	-	P->F	P->F

^{* =} affected

Maybe Unsafe Results skipping this target might miss a transition

T:	
lime	$\overline{}$
111110	

Changelist	CL1	CL2	CL3
Target Result	F	*	Р
Safety	-	Maybe unsafe	Maybe unsafe

^{* =} affected

Skipping milestones: <1% test targets detect breakages

Skipping milestones: breakages imply cuprit finding

Skipping milestones

Skipping milestones

Skipping milestones: cuprit finding, acceptance tuning

Skipping milestones: cuprit finding, acceptance tuning

Evaluating Strategies

- Goals
 - Low testing cost
 - Low time to find a transition
 - Low risk of missing transitions
- Exclude Flakes using 3 different exclusion mechanisms
- Measure "Safety"
 - Skipping a test is "safe" if it did not transition
 - 100% safety means all transitions are found
- Evaluate new strategies against historical record
 - Allows Fast algorithm iteration time
 - Must excludes flaky test failures

Offline Safety Evaluation

Safe Changelists

- 91% of changes do not cause a transition - we could safefly skip all testing for them!
- Of the remainder, a perfect algorithm could skip more than 98% of the currently selected tests and find all transitions
- Random is a curve due to probability distributions and large impact changes

Flaky Tests

- Test <u>Flakiness</u> is a huge problem
- Flakiness is a test that is observed to both Pass and Fail with the same code
- Almost 16% of our 4.2M tests have some level of flakiness
- Flaky failures frequently block and delay releases
- Developers ignore flaky tests when submitting sometimes incorrectly
- We spend between 2 and 16% of our compute resources re-running flaky tests

Analysis of Test Results at Google

- Analysis of a large sample of tests (1 month) showed:
 - 84% of transitions from Pass -> Fail are from "flaky" tests
 - Only 1.23% of tests ever found a breakage
 - Frequently changed files more likely to cause a breakage
 - o 3 or more developers changing a file is more likely to cause a breakage
 - Changes "closer" in the dependency graph more likely to cause a breakage
 - Certain people / automation more likely to cause breakages (oops!)
 - Certain languages more likely to cause breakages (sorry)
- See our accepted <u>Paper</u> at ICSE 2017

Flaky test impact on project health

- Many tests need to be aggregated to qualify a project
- Probability of flake aggregates as well
- Flakes
 - Consume developer time investigating
 - Delay project releases
 - Waste compute resources re-running to confirm

Flakes

Percentage of resources spent re-running flakes

Sources of Flakiness

- Factors that cause flakes
 - Test case factors
 - Waits for resource
 - sleep()
 - Webdriver test
 - UI test
 - Code being tested
 - Multi-threaded
 - Execution environment/flags
 - Chrome
 - Android

O ...

Flakes are Inevitable

- Continual rate of 1.5% of test executions reporting a "flaky" result
- Despite large effort to identify and remove flakiness
 - Targeted "fixits"
 - Continual pressure on flakes
- Observed insertion rate is about the same as fix rate

Conclusion: Testing systems must be able to deal with a certain level of flakiness. Preferably minimizing the cost to developers

Flaky Test Infrastructure

- We re-run test failure transitions (10x) to verify flakiness
 - If we observe a pass the test was flaky
 - Keep a database and web UI for "known" flaky tests

Finding Flakes using the historical record

- 84% of test transitions are due to flakiness
- Concentrated in 16% of the total test pool
- Conclusion: Tests with more transitions are flaky

Number of Edges Per Target by % Flakes/NotFlakes

Number of Transitions Per Target by % Flakes/NotFlakes

Number of Transitions

Take away message: Test targets with more transitions in their history are more likely to be flakes. (Number of edges = signal for flake detection)

Flakes Tutorial

- Using Google BigQuery against the public <u>data set</u> from our 2016 paper
- Reproduce some of our results
 - Techniques to identify flaky tests using queries
 - Hands on!
- Hope to see you there!
- NOTE: A Google account is required for the hands-on portion
 - Send your Google account to <u>john.micco@gmail.com</u> before the lab if possible!

Q&A

For more information:

- Google Testing Blog on CI system
- Youtube Video of Previous Talk on Cl at Google
- Flaky Tests and How We Mitigate Them
- Why Google Stores Billions of Lines of Code in a Single Repo
- GTAC 2016 Flaky Tests Presentation
- (ICSE 2017) "
 Who Broke the Build? Automatically Identifying Changes That Induce Test Failures In Continuous
 Integration at Google Scale" by Celal Ziftci and Jim Reardon
- (ICSE 2017) "Taming Google-Scale Continuous Testing," by Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siemborski and John Micco