Japan Symposium on Software Testing 2013 Tokyo

見通しのよいテストの段階的詳細化の手法 -テストの網羅性確保の提案-

本日の発表者: 吉岡 克浩†

共著:水野 昇幸† 西 康晴‡

十三菱電機株式会社 ‡電気通信大学 情報理工学研究科

2013年1月30日

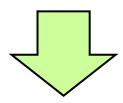
発表内容の紹介

- 1. 今までのテスト設計手法と課題
- 2. 課題の深堀と解決方針
- 3. 見通しのよいテストの段階的詳細化手法(全体構成とテスト担当者の作業を紹介)
- 4. 得られた効果

Changes for the Better

1. 今までのテスト設計手法と課題の紹介 (第1世代、第2世代)

今までのテスト設計手法


テスト設計手法	課題
<第1世代>	機能性以外の確認が漏れやすい
大中小の階層でテスト	仕様書からのコピペ&モディファイ
項目を整理する	になることが多い
<第2世代>	情報量が多く、俯瞰しづらい
マトリクス手法の導入	レビューが困難
	作業が大変、バラつきがある

大中小項目整理 テスト項目 中項目 小項目 大項目 タイマ操作 設定

リセット

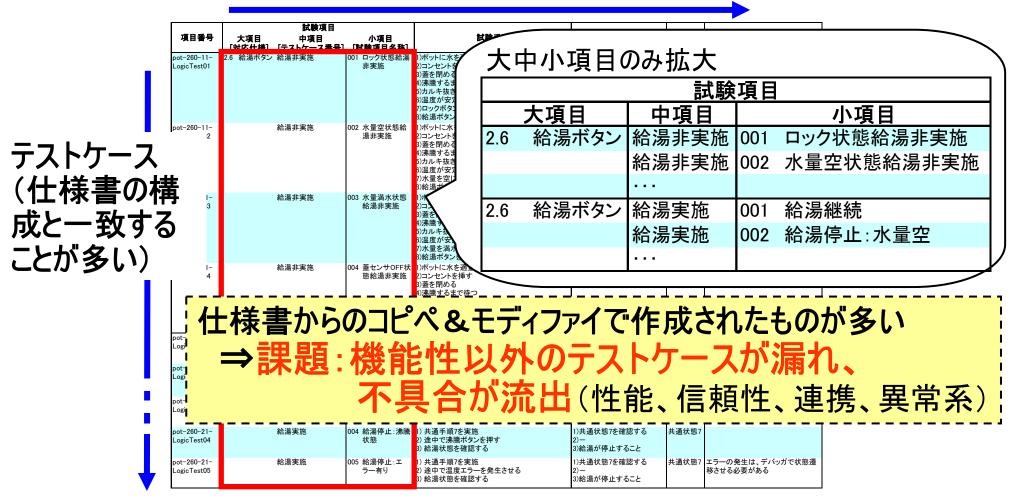
マトリクス手法

第3世代の手法:

見通しの良いテストの段階的詳細化へ

3

1. 今までのテスト設計手法と課題 (第1世代:大中小分類のテスト手順書)


テスト対象の分類(大/中/小)+テスト手順

		試験項目					
	項目番号	大項目 中項目 [対応仕様] [テストケース番号]	小項目 [試験項目名称]	試験手順	試験規格	開始状態	備考
	pot-260-11- LogicTest01	2.6 給湯ボタン 給湯非実施	001 ロック状態給湯 非実施	1)ボットに水を適量注ぐ 2)コンセントを挿す 3)蓋を閉める 4)沸騰するまで待つ 5)カルキ抜き完了まで待つ 6)温度が安定(保温温度±2°C)するまで待つ 7)ロックパタンを押してロック状態にする 8)給湯ボタンを押す	6)保温状態であること 7)ロック状態であること 8)給湯非実施 エラーコード表示L1	保温状態ロック解除	
テストケース (仕様書の様	pot-260-11- 2	給湯非実施		1)ボットに水を適量注ぐ 2)コンセントを挿す 3)蓋を閉める 4)沸騰するまで待つ 5)カルキ状を完了まで待つ 6)温度が安定(保温温度±2°C)するまで待つ 7)水量を空にする 8)終湯ボタンを押す	6)保温状態であること 8)給湯非実施 エラーコード表示L2	保温状態ロック解除	水量の変化はデバッガで状態変化させる必要あり もしくは、ボットの蓋を空けずに水量 を減らす治具が必要
成と一致することが多い)		給湯非実施		1)ボットに水を適量注ぐ 2)コンセントを挿す 3)蓋を閉める 4)沸騰するまで待つ 5)カルキ抜き完了まで待つ 6)温度が安定(保温温度±2°C)するまで待つ 7)水量を満水にする 8)給湯ボタンを押す	6)保温状態であること 8)給湯非実施 エラーコード表示L2	保温状態ロック解除	水量の変化はデバッガで状態変化させる必要あり もしくは、ボットの蓋を空けずに水量 を減らす治具が必要
CC/3*9 (1)	1- 4	給湯非実施	態給湯非実施	1)ボットに水を適量注ぐ 2)コンセントを挿す 3)蓋を閉める 4)沸騰するまで待つ 5)カルキ抜き完了まで待つ 6)温度が安定(保温温度±2°C)するまで待つ 7)蓋を空けて蓋センサOFFにする 8)給湯ボタンを押す	6)保温状態であること 8)給湯非実施 エラーコード表示L3	保温状態ロック解除	
	pot-260-21- LogicTest01	2.6 給湯ボタン 給湯実施	001 給湯継続	1) 共通手順7を実施 2) 給湯が継続される状況を確認する	1)共通状態7を確認する 2)給湯が継続されていること	共通状態7	
	pot-260-21- LogicTest02	給湯実施	002 給湯停止:水量 空	1) 共通手順7を実施 2) 途中で水量を空にする 3) 給湯状態を確認する	1)共通状態7を確認する 2)- 3)給湯が停止すること	共通状態7	水量の変化はデバッガで状態変化させる必要あり もしくは、ポットの蓋を空けずに水量を減らす治具が必要
	pot-260-21- LogicTest03	給湯実施	003 給湯停止:蓋開 く	 1) 共通手順7を実施 2) 途中で蓋を空ける 3) 給湯状態を確認する 	1)共通状態7を確認する 2)- 3)給湯が停止すること	共通状態7	
	pot-260-21- LogicTest04	給湯実施		 1) 共通手順7を実施 2) 途中で沸騰ボタンを押す 3) 給湯状態を確認する 	1)共通状態7を確認する 2)- 3)給湯が停止すること	共通状態7	
↓	pot-260-21- LogicTest05	給湯実施	005 給湯停止:エ ラー有り	1) 共通手順7を実施 2) 途中で温度エラーを発生させる 3) 給湯状態を確認する	1)共通状態7を確認する 2)- 3)給湯が停止すること	共通状態7	エラーの発生は、デバッガで状態遷 移させる必要がある

1. 今までのテスト設計手法と課題 (第1世代:大中小分類のテスト手順書)

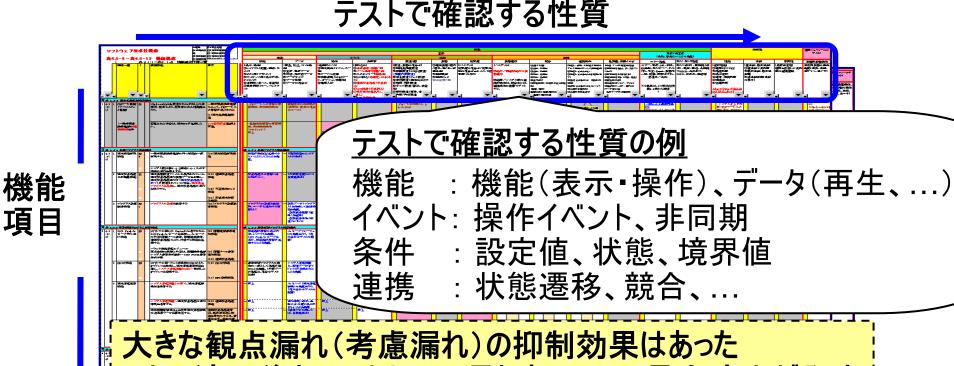
テスト対象の分類(大/中/小)+テスト手順

1. 今までのテスト設計手法と課題

(第2世代:マトリクス手法)

テストで確認すべき性質をSEPGで定義し、機能と組合せたマトリクスで テストケースを抽出する手法を適用

テストで確認する性質


機能 項目

1. 今までのテスト設計手法と課題 (第2世代:マトリクス手法)

テストで確認すべき性質をSEPGで定義し、機能と組合せたマトリクスで テストケースを抽出する手法を適用

テストで確認する性質

しかし適用後もテストケース漏れ起因の不具合流出が発生 不具合流出原因の50%がテストケース漏れ)

⇒さらなる改善が必要

第2世代の問題点:

テスト対象の規模に比例し機能数が増加 ⇒ マトリクスが巨大化

とある事例では、、、、

テストで確認する性質(列数)=17

機能数(行数) =600

マトリクス巨大化による以下の課題を確認

- 1. 俯瞰性:全体像の把握が難しい
- 2. レビューしやすさ: 確認すべきポイントがいくつもある
- 3. 作業性: 担当者がセルを埋めることに負担を感じる
 - 組合せ不要のムダなセルも多く存在する
- 4. バラつき: 担当者のアウトプットにバラつきが存在する

Changes for the Better

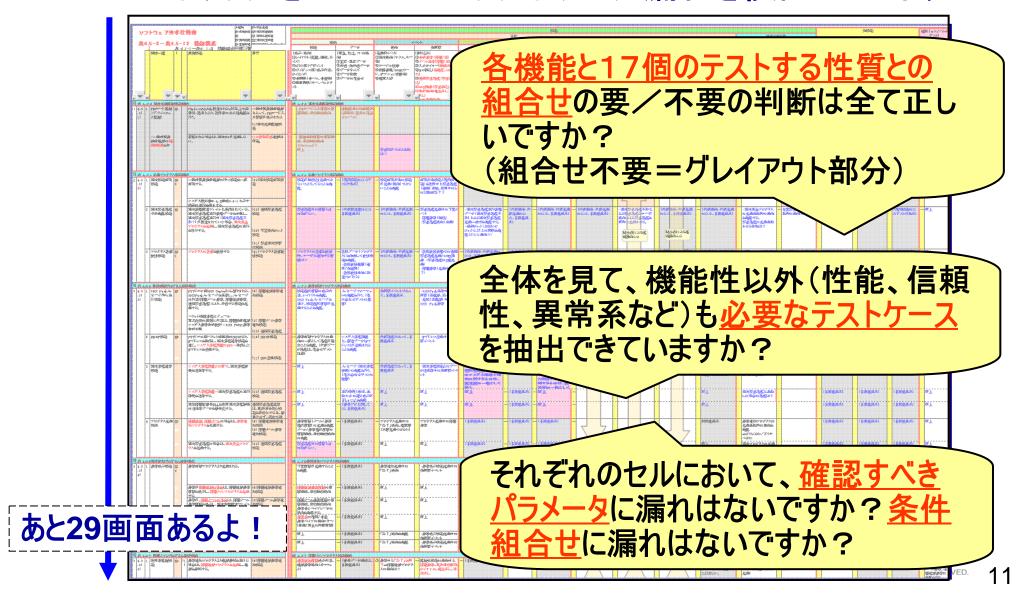
2. 課題の深堀と解決方針

第2世代の問題点:

テスト対象の規模に比例し機能数が増加 ⇒ マトリクスが巨大化

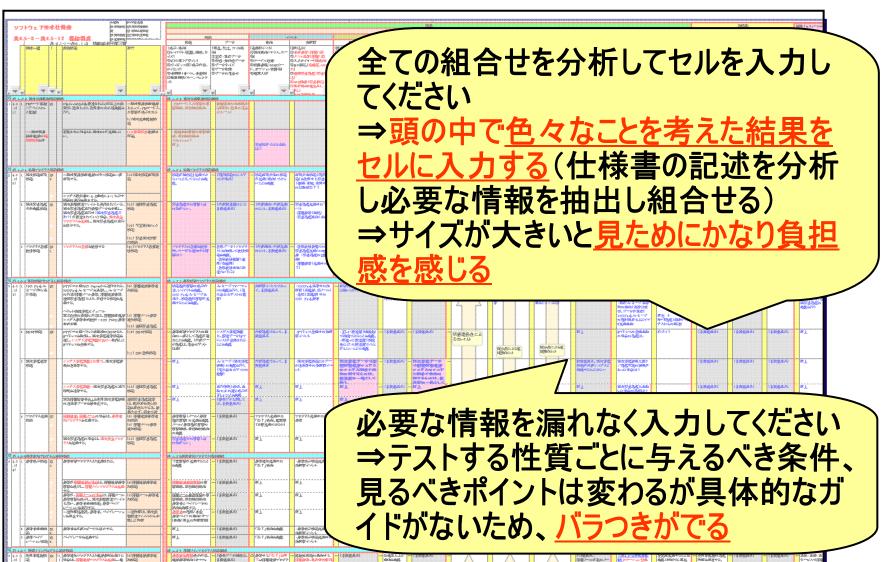
全部考えるとこんな感じ。

MITSUBISH 2. 課題の深堀と解決方針


第2世代の問題点:

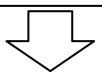
テスト対象の規模に比例し機能数が増加 ⇒ マトリクスが巨大化

もしくはこんな感じ 機能数(行数) =600マウス スクロール が大変 ※それぞれの口の中身

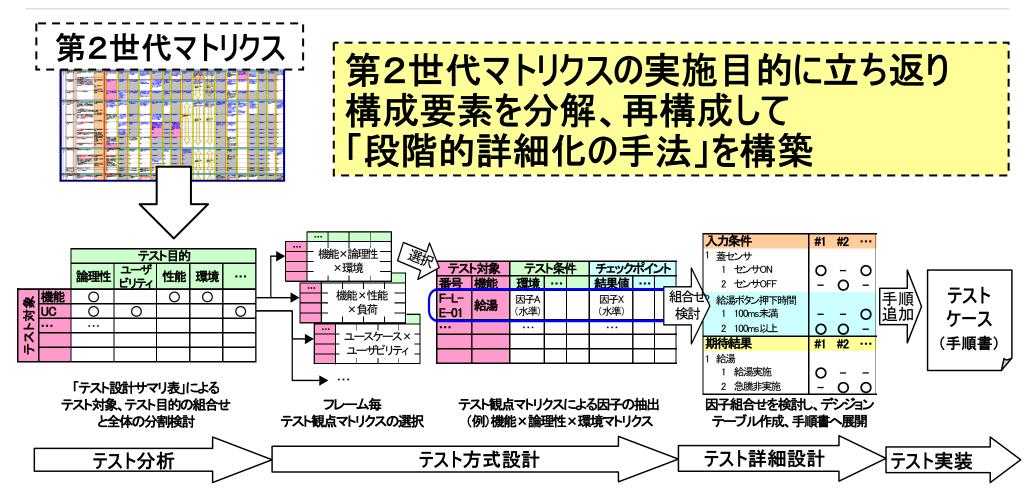


マトリクスをレビューしてテストケース漏れを検出しましょう!

入力する担当者はどうでしょうか?


マウス スクロール が大変

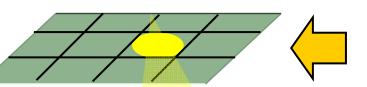
1つの表に収めようとすることが間違い?


- ⇒考えやすいサイズに分割する 最上位の俯瞰できる構成から、段階的に詳細化
- ⇒詳細化していくプロセスを定義する "意味を持った分割"を行ったうえで、 1つ1つの詳細化の作成目標、 レビューポイントを明確化

「見通しのよいテストの段階的詳細化の手法」 の構築、適用へ

Changes for the Better

3. テストの段階的詳細化手法



全体を抽象化した表現で 俯瞰できるようにして、 テストを行うべき対象、目的に 抜けが無いことを議論、確認 目的単位で定義された 詳細な観点を用いて、 テストにおけるパラメータ、 要素を抽出 抽出されたパラメータにおいて、組合せを考え、デシションテーブルで整理、その後手順書へ展開

Changes for the Better

3. テストの段階的詳細化手法

<テスト分析> 全体を俯瞰できる粒度で テストアーキテクチャを検討

テスト設計サマリ表

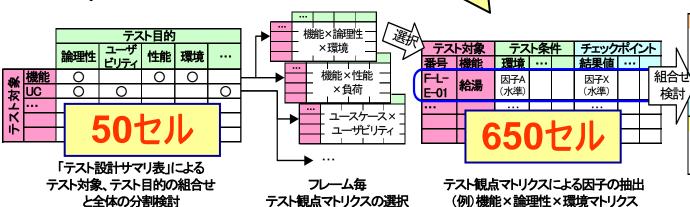
<テスト方式設計> テスト対象とテスト目的の 組合せ(フレーム)毎に テスト因子を抽出

フレーム毎の テスト観点 マトリクス

Changes for the Better

3. テストの段階的詳細化手法

手法の特長:段階的に詳細化してレビューするポイントを明確化


レビューポイント:大きな 粒度で網羅性を確認 テスト対象の粒度、テスト目的、それらの組合せ レビューポイント: 因子 の網羅性を確認 テスト条件の因子、振 る舞いの因子 レビューポイント: 因子組合せの網羅性を確認 テスト条件の因子組合せ、水準の組合せ

#1 #2 ...

0

- O

0

テスト分析

全体を抽象化した表現で 俯瞰できるようにして、 テストを行うべき対象、目的に 抜けが無いことを議論、確認 テスト方式設計

目的単位で定義された 詳細な観点を用いて、 テストにおけるパラメータ、 要素を抽出 因子組合せを検討し、デシジョン テーブル作成、手順書へ展開

テスト詳細設計

入力条件

蓋センサ

1 センサON

2 センサOFF

1 100ms未満

2 100ms以上

給湯ボタン押下時間

テスト実装

テスト

ケース

(手順書)

抽出されたパラメータにおいて、組合せを考え、デシジョンテーブルで整理、

16

Changes for the Better

3. テストの段階的詳細化手法の紹介

~テスト分析:サマリ表の検討

作業:①どのテスト対象に対して何の性質を保証する テストをするか「サマリ表」を用いて検討する。

- ②「フレーム」単位でテストの範囲を決める。
- ③「フレーム」単位のテンプレートを選択する。

テスト分析 テスト方式設計 テスト詳細設計 テスト実装

77-5-555 100000 2-7-5-500 100000 2-7-5-500 100000 2-7-5-500 100000 2-7-5-500 100000 2-7-5-500 100000 2-7-5-500 100000 2-7-5-500 100000 2-7-5-500 100000 2-7-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	・ 本地 ・ 大型技 ・ 大型大 ・ 大 ・ 大 ・ 大 ・ 大 ・ 大 ・ 大 ・ 大 ・ 大 ・ 大 ・	アスト アスト アスケル・	1 重センサ 1 センサのN 2 センサのN 2 センサのF 1 100ms未満 2 100ms北上	٥	- 0 - 0 - 0 - 0	手順 ラスト ケース (手順者)
「テスト投稿)サマリ政」による テスト対象・テスト目的の組合せ 上金件の分割性制 テスト分析	ブルーム等 デスト製造マドリクスの選択	テスト領点マトリクスによる原子の他出 《別・機能×開催をドリクス スト方式設計	1 MSRM 2 SMM (2 MSMM BTM合せを検討 テーブル作成。手	7		テスト実装

(1)サマリ表による検討

テスト目的			品質特性	依有				
テスト対象	論理性	ユーザビリティ	性能	保守性	信頼性	組合せ	環境	•••
1 機能	0		0				0	
2 ユースケース	0	0		0	0			0
3 実運用シナリオ	0	0		0				
4 …	0		0	0	0		0	0

レビューポイント:

全体のテスト対象の抜けの確認 品質特性の確認項目の合意

※サマリ表:

テストの範囲を議論して合意するツール

COPYRIGHT © 2011 MITSUBISHI ELECTI 50セル

3. テストの段階的詳細化手法の紹介

~テスト分析:サマリ表の検討

作業:①どのテスト対象に対して何の性質を保証する テストをするか「サマリ表」を用いて検討する。

②「フレーム」単位でテストの範囲を決める。

③「フレーム」単位のテンプレートを選択する。

②サマリ表による検討⇒詳細検討

	テスト目	的			品質特性			依有		• • •
			論理性	ユーザビリティ	性能	保守性	信頼性	組合せ	環境	• • •
テス	卜 対象		L	U	Р	MA	RL	С	Е	NL
1	機能		0		0				0	
1.1		F	0						0	
1.2		F			0					
2	ユースケース		0	0		0	0			0
2.1		UC	0							
2.2		UC		0						
2.3		UC				0				
2.4		UC					0			0
2.5		UC					0			
3	実運用シナリオ		0	0		0				
3.1		SO	0							
3.2		SO		0						
3.3		SO				0				

3. テストの段階的詳細化手法の紹介

~テスト分析:サマリ表の検討

作業:①どのテスト対象に対して何の性質を保証する テストをするか「サマリ表」を用いて検討する。

②「フレーム」単位でテストの範囲を決める。

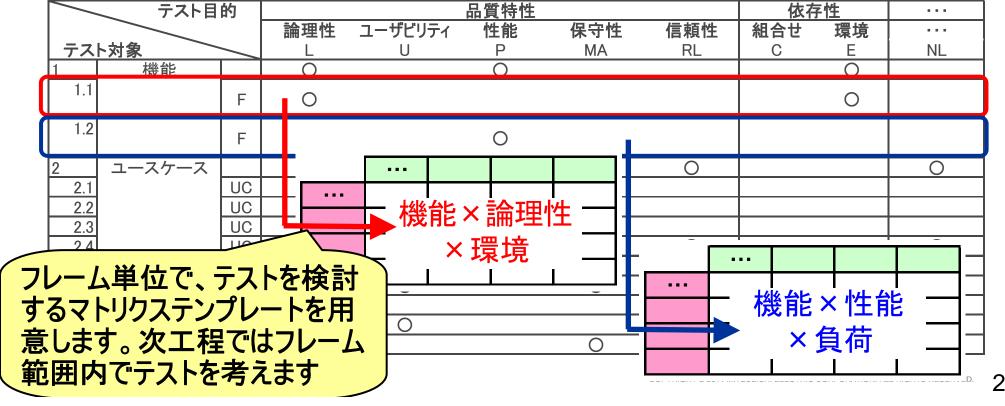
③「フレーム」単位のテンプレートを選択する。

②サマリ表による検討⇒フレーム検討

	テスト目	的			品質特性			依有	F性	• • •
			論理性	ユーザビリティ	性能	保守性	信頼性	組合せ	環境	
テス	ト対象		L	U	Р	MA	RL	С	Е	NL
1	機能		0		0				0	
1.1		F	0				_		0	
1.2		F			0					
2	ユースケース		0	0		1	たより	1 1	しいがっ	7 \"±
2.1		UC	0				行を「フ	V - I	」て中子(いまり。
2.2		UC		0		_	>テストな	は給計	オス新	田
2.3		UC							プマキ	· [건대
2.4		UC					0			0
2.5		UC					0			
3	実運用シナリオ		0	0		0				
3.1		SO	0							
3.2		SO		0						
3.3		SO				0				

Changes for the Better

3. テストの段階的詳細化手法の紹介


~テスト分析:サマリ表の検討

作業:①どのテスト対象に対して何の性質を保証する テストをするか「サマリ表」を用いて検討する。

- ②「フレーム」単位でテストの範囲を決める。
- ③「フレーム」単位のテンプレートを選択する。

③フレーム検討⇒マトリクステンプレートの検討へ

Changes for the Better

3. テストの段階的詳細化手法

~テスト方式設計:テスト観点マトリクス

作業:①仕様書から具体的なテスト対象(行見出し)を抽出

②テスト条件、チェックポイントの因子を抽出

: テスト条 フポイント
0セル 21

Changes for the Better

3. テストの段階的詳細化手法

~テスト詳細設計:デシジョンテーブル作成

作業:①マトリクスの1行から組合せる因子をグループ化 ②グループ毎にデシジョンテーブルでテストケースを作成 テスト分析 テスト方式設計 テスト詳細設計 テスト実装

				テスト条件					チェックポイント			
テスト観 点番号	機能名	概要	環境	入力/ 参照値	入力/ 参照状態	入力 イベント	中間値/ 中間状態	結果値	振る舞い	事後状態	参照元 情報	1
F-L-E-01	給湯機能		ポットシリーズ(話題沸騰ポット、話題急騰ポット)		ロック状態(ロック、解除) 水量(空、適量、満水超え) 蓋センサ(ON、OFF) *1 温度制御状態(保温、沸騰、 アイドル)	給湯ボ タン押 下			給湯実施、給湯非 実施 エラーコード表示 (L1、L2、L3、L4、な し)	元の状態で あること。	*1:pot-320- 11	

テスト観点番号: F-L-E-01

4 L4(給湯不可状態)

1行=1テ 入力条件 #2 ストケース 1. ロック状態 1 ロック 0 2 解除 \circ \circ 2. 水量 1 適量(水位センサ1~4がONの状態) 0 レビューポイント(1): 因子 3 満水(満水センサがONの状態) 3. 蓋センサ 組合せの妥当性 1 ON(閉じる状態) 0 0 ノビューポイント②:水準 0 2 OFF(開く状態) 4. 状態 1 保温状態 0 0 2 沸騰状態 3 アイドル状態 期待結果 #1 #2 #3 1. 振る舞い レビューポイント③:水準 1 給湯実施 2 給湯非実施 \circ 0 0 0 組合せの妥当性 2. エラーコード表示 1 L1(ロック中) 0 2 L2(給湯不可水量) 0 3 L3(蓋空き)

0

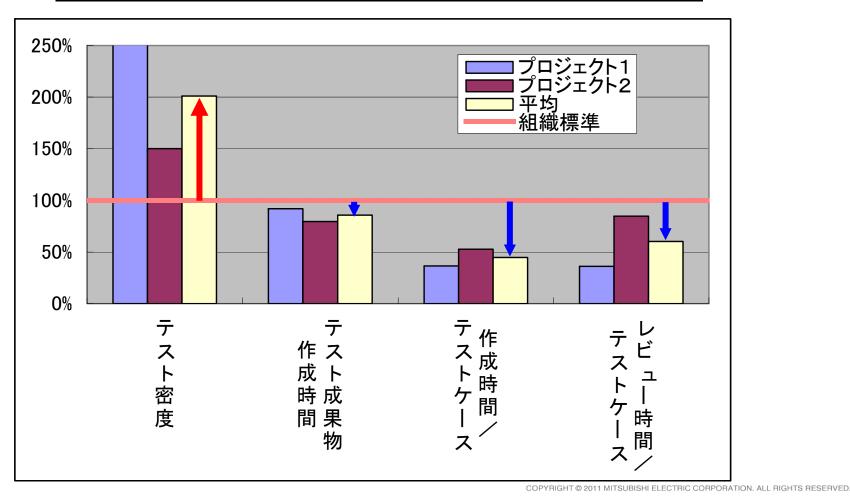
3. テストの段階的詳細化手法

~テスト実装:テスト手順書を作成

作業:①テストケースに準備作業などのテスト手順を追加

②テストケース間の共通性に着目しテスト手順を集約

③実施効率に着目し順番を最適化


テスト項目 番号	テスト項目	開始状態	テスト手順	テスト規格	備考
共通手順-01	共通手順 保温状態にする		1)ポットに水を適量注ぐ 2)コンセントを挿す 3)蓋を閉める 4)沸騰するまで待つ 5)カルキ抜き完了まで待つ 6)温度が安定(保温温度±2°C)するまで待つ	6)保温状態であること	
F-L-E-01-#1 -01	給湯ボタン ロック状態給湯 実施	ト 保温状態 ロック解除	1)共通手順-01を実施する 2)ロックボタンを押してロック状態にする 3)給湯ボタンを押す	2)ロック状態であること 3)給湯非実施 エラーコード表示L1	
F-L-E-01-#2 -01	水量空状態給湯 非実施	保温状態ロック解除	1)共通手順-01を実施する 2)水量を空にする 3)給湯ボタンを押す	3)給湯非実施 エラーコード表示L2	水量の変化はデバッガで状態変化させる必要ありもしくは、ポットの蓋を空けずに水量を減らす治具が必要

4. 得られた効果:テスト設計、レビュー効率向上

◆組織標準に比べ、テスト設計時間、レビュー時間を削減

組織標準値に対する手法適用実績値の割合(%)

4. 得られた効果:テストの質の向上

◆従来手法に比べ、テストケースの因子組合せの抜けを抑制

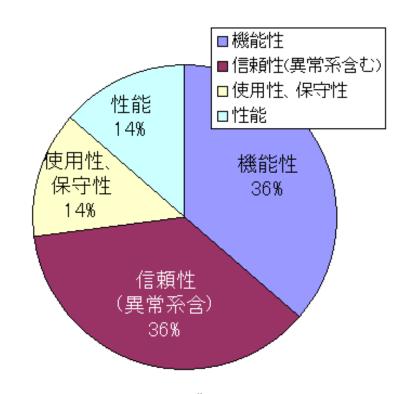
<u>従来手法と本手法を同じプロジェクトに適用しテストケース抜けを評価</u>

テスト 対象	ケースA: テスト数 (以前の設計手法)	ケースB: テスト数 (今回の設計手法)	
機能1	10 ⇒評価: 7件の抜け	16 ⇒評価:1件の抜け	
機能2	2 ⇒評価 : 2件の抜け	5 ⇒評価:1件冗長あり	
機能3	20 ⇒評価:3件の抜け 1件冗長あり	18 ⇒評価 : 抜け無し	
合計	32 ⇒評価 : 12件の抜け	39 ⇒評価: 1件の抜け ***********************************	HTS RESERVE

MITSUBISHI Changes for the Better

4.得られた効果:俯瞰性の改善

俯瞰性の改善は、定性的な効果の実感及び、「観点を抜けなく確認する」 という第2世代の目的が果たせていることを確認する方針とした。


■定性的効果:

感覚的には一目瞭然。 実担当者からのヒアリングでも 「俯瞰性が良くなった」という意見有り。

■観点を抜けなく確認:

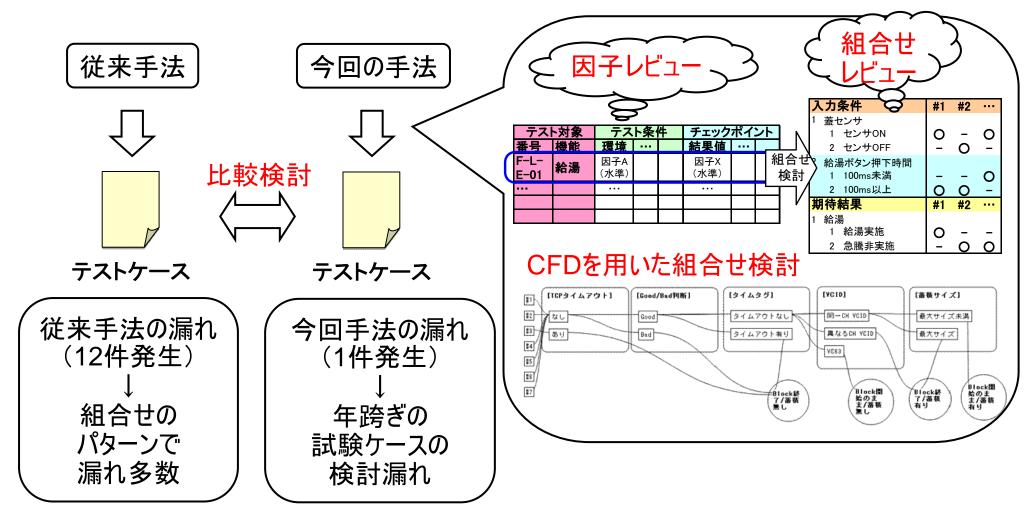
今回のテストプロセスを用いた プロジェクトにおけるテストの実施にて、 機能性以外の信頼性(異常系)や、 性能面の課題を実試験にて 検出することが出来た。

第2世代の目的(観点漏れ抑制)を達成しつつ俯瞰性の改善、が出来ている

検出バグ、課題 (テスト環境起因を除く) における分析結果

MITSUBISHI 4.得られた効果:課題に対する評価

			定量	効果へ <i>σ</i>)影響
部	果題	対策	レビュー 効率	テスト設計効率	テスト ケース の質
1. 俯瞰性	全体像の把握が難しい	・テスト分析に抽象度を上げたサマリ表を導入 ⇒全体をA4シート1枚で俯瞰するビュー・段階的詳細化プロセス ⇒全体から詳細へのトレーサビリティ確保	0		
2. レビュー しやすさ	確認すべきポイ ントがいくつもあ る		0		0
3. 作業性	巨大マトリクス による担当者の 負担感	・テスト目的毎にマトリクスを分割 ⇒分担を容易化	0	0	
	組合せ不要の ムダなセルが 多い	抽象度が高い段階(サマリ表)で組合せを検討 ⇒詳細レベルの組合せが減少	0	0	
4. バラつき		・段階的詳細化プロセスで作業手順を明確化 ・テスト目的毎に観点を詳細化したマトリクステンプレートを作成 ⇒人依存のバラつき、考慮漏れを抑制	0	0	O

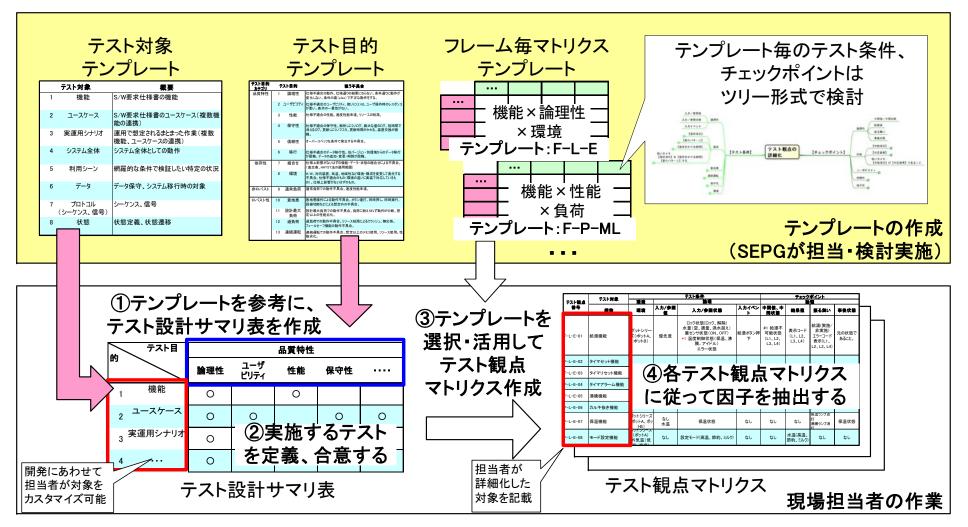

終了

ご清聴ありがとうございました

Changes for the Better

おまけ:適用結果「テストの質の向上」 ~抜けの判断方法~

抜けの判断方法は、今回の手法を用いた試験のレビュー、CFDを用いた組合せ検討、2つのテストケースの比較を用いて実施した。



Changes for the Better

おまけ:SEPGと実担当者の作業範囲

SEPGにて担当した作業部分(上)と、現場担当者が実施する作業(下)分担を以下にまとめる。

SEPGは、各組織の開発ドメインに即したテンプレートを用意する。

