
ソフトウェアテストシンポジウム 2005
JaSST’05: Japan Symposium on Software Testing 2005

制御系システムモデルからのテストシーケンス生成

Test Sequences Generation from Control System Models

Mark Blackburn Ph.D., Robert Busser, Aaron Nauman, Travis Morgan
 T-VEC Technologies, Inc. 2214 Rock Hill Road, Herndon, VA 20170 USA
 （国内連絡先：富士設備工業㈱浅野義雄 yoshio@fuji-setsu.co.jp ）

あらまし 制御系システムの動的な状態に対するテストシーケンスを制御系デザインモデル Simulink® など

から生成するテストベクタ生成システムについての最新の成果を報告します。制御系システムで一般的なタイ

ムディレイやインテグレータなどのフィードバックループを用いたモデルをサポートします。テストシーケン

スは論理パスを解釈し、システムの動的な状態を含めてテストベクタを算出します。またこの論文では、モデ

ルベーステストツールを使用し検証のエビデンスを生成するプロセス(FAA の DO-178B などに適応する)に関し

てや、それに対するツールとしてのクオリフィケーション対応についても触れています。

Abstract This paper discusses some recent advancements of the test generation system to produce test sequences for
testing dynamic systems from design modeling systems such as Mathworks’ Simulink®. Test sequences support test
generation of systems that are modeled using constructs that support feedback, such as integrators or time delays, which
are common in control system models. Test sequences can address the logic paths, and computation testing in the software
as well as dynamic aspects of systems response. The paper briefly discusses tool qualification support, and processes for
using this model-based testing tool to produce verification evidence that meets the FAA standards such as DO-178B

1. Introduction
Requirement and design-based models are used in aircraft and automotive software-system development where high reliability

is demanded. Some rigorous modeling approaches support simulation and code generation, but have limited support for
automated test generation. To address this need the Test Automation Framework (TAF) approach for model-based analysis and
test automation was developed [1].

Figure 1. TAF Integrated Components

ソフトウェアテストシンポジウム 2005
JaSST’05: Japan Symposium on Software Testing 2005

TAF integrates various government and commercially
available model development and test generation tools to
support defect prevention and automated testing of systems
and software as shown in Figure 1. TAF supports model
analysis and test generation for requirement-based tools which
is a functional (table-based) modeling tool based on the
Software Cost Reduction (SCR) method [2]. TAF also
supports model analysis and test generation for design-based
modeling, simulation, and code-generation tools such as
MathWorks’ Simulink and Stateflow.

Through the use of model translation, requirement-based or
design-based models are converted into a form where the test

generation component of TAF, produces tests vectors. Test
vectors include inputs as well as the expected outputs with
requirement-to-test traceability information. Test vector
generation system also supports test driver generation,
requirement test coverage analysis, and test results checking
and reporting. The test driver mappings and test vectors are
inputs to the test driver generator, which produces test drivers
that are then executed against the implemented system during
test execution.

1.1 Usage Scenario
For design-based modeling approaches, the process

resembles the illustration shown in Figure 2.
Simulink/Stateflow is a hybrid, control system modeling
and code generation tools. In this scenario, models undergo
translation and static analysis to verify their integrity. The
Test vector generation system is its ability to identify model
defects. The model checking ensures all paths through the
model are valid, which means that code generated from the
model is reachable. Without this capability, models can be
used to generate code automatically, but the results of
executing that code under certain conditions are undefined.
This particular capability provides increased confidence as
to the integrity of the model. Model problems are reported
to the engineer responsible for constructing the model for
immediate correction. Once modeling is complete, the
model is used as the basis for developing tests. Through
dynamic analysis (i.e., execution through auto generated
code or within a simulator) of the system, anomalies in the
model and implementation can be identified and corrected.

1.2 Background
The core capabilities of this approach were developed in

the late 1980s and proven through use in support of FAA
certifications for flight critical avionics systems [3]. The
approach supports requirement-based test coverage
mandated by the FAA with significant life cycle cost
savings [4; 5; 6].

The approach and tools described in this paper have been
used for modeling and testing system, software integration,
software unit, and hardware/software integration
functionality. It has been applied to critical applications in
medical and aerospace, supporting automated test driver
generation in a most languages (e.g., C, C++, Java, Ada,
Perl, PL/I, SQL), as well as, proprietary languages, and test
environments. The TAF tools have tool qualification
packages that can be used to support FAA and FDA
certifications. The qualification packages are compliant with
FAA Software Approval Guidelines, 8110.49, Chapter 9,
Qualification Of Software Tools Using RTCA/DO-178B
[7].

Figure 2. Simulink/Stateflow Modeling Process Flow

ソフトウェアテストシンポジウム 2005
JaSST’05: Japan Symposium on Software Testing 2005

1.3 Scope
This paper focuses on a test generation system to produce

test sequences to support the testing of dynamic systems.
While TAF/Test vector generation system has been used
primarily for verifying the static response of systems under
test, this paper describes how this approach can be applied
to the generation of test cases suitable for verifying the
performance of systems that also exhibit dynamic response.
It describes how the Test vector generation system
mechanism can be configured to include the semantics
associated with multiple cycles of “execution” of a given
system. This description shows how Test vector generation
system can be used to automatically determine input values
for the “state memory” variables that characterize such
systems. In addition, it shows how the powerful state-space
solver capabilities of this technology can be employed to
assist in synthesizing many of the important gain
coefficients such designs depend on.

1.4 Concepts and Definitions
Logic design is often classified into two categories,

“combinatorial” and “sequential”. Combinatorial logic is
comprised strictly of stateless logic operators (AND, OR,
NOT, etc.). The output values produced by combinatorial
logic formulae are expected to be exactly the same for the
same set of inputs values. Systems based on combinatorial
logic maintain no memory of input values or of computation
results from previous execution cycles and can be said to
exhibit a static response to the values of its input variables.
The output response of the system never varies for a given
input excitation with respect to the current execution cycle.
Sequential logic includes one or more components whose
purpose is to maintain some knowledge of the input values
from previous execution cycles, such as flip-flops or time-
delay operators, and whose output values depend not only
on the current inputs but also on this historically maintained
knowledge. The output response of a sequential logic
system can vary from cycle to cycle in reaction to the
history of inputs experienced by the system. Systems of this
type can be described as exhibiting a dynamic response in
addition to any static response characteristics they may have.

2. Overview
Design models used for simulation and/or automatic

code generation often include input-to-output relationships
involving multiple cycles of execution. This is due to the
use of primitive operators that have “state memory”
feedback semantics in the manner of sequential logic
designs described above (e.g., the TimeDelay block in
Simulink). These types of operators are often used to design
digital signal processing applications such as signal
frequency sensitive filters and feedback-loop control law
mechanisms for digital control applications. Such

applications are very dependent on exhibiting a dynamic
response to their input signal values.

When an application’s design includes dynamic response
characteristics it is often difficult to predict the expected
output value response for a given set of input values when
only considering a single cycle’s inputs. Consequently,
verifying the correct operation of such a design is a non-
trivial task and compiling verification evidence of proper
functionality with traditional software testing approaches
can be problematic. However, verification evidence typical
of these approaches is often required by customers and
certifying agencies, such as the FAA in the commercial
aerospace domain.

Traditional software testing approaches are generally
centered around developing and applying suites of test cases,
where each test case is comprised of a set of input values
and an expected output value, are geared towards verifying
the required static response of a system. The system under
test (SUT) is initialized with the input values, is executed
from a specific start point to specific end point in the
application’s instruction space, the actual value of one or
more output variables is extracted and compared to the
expected output values, and the results of these comparisons
determine the pass or fail status of the test. Each such test is
the examination of a single input-to-output execution cycle,
essentially one state transition of the overall system. Tests of
this type are expected to be repeatable any number of times
in sequence – the same input values expected to result in the
same output values. However, the use of operators with
“state memory” semantics can render such single state
transition test cases totally non-repeatable. Each successive
execution of the test can result in a unique output result. It
should be apparent that such an approach to testing is
inadequate, at best, for fully verifying the time-wise non-
linear or state-machine-based characteristics found in such
models.

It is possible to test a SUT’s dynamic response using the
“test case” approach by modeling “state memory” variables
as additional input variables. However, it can be difficult to
determine what values these “state memory” inputs should
be for a given test case because they depend directly on the
history of inputs. The complexity of the mechanism
providing such “state-memory” semantics, and of the
mathematical relationships characterizing system response
in terms of inputs and this state memory, is primarily
responsible for this difficulty.

The requirements governing dynamic response are often
expressed in terms of output value tendencies, such as rise
time, over shoot, and settling time rather than functional
value mappings between a single input value set and an
associated output value.

Requirements describing a system’s static response can
be formally expressed in terms of pre-condition/post-
condition pairs. The pre-condition characterizes the system

states under which the post-condition’s input-values-to-
output-value mapping is required to hold. The requirements
governing a given output can be said to be “complete” if
there is at least one pre-condition/post-condition pair
describing the value of the output in terms of input values
for all points in time for all modes of operation of the
system. They can be said to be “consistent” if there is at
most only one such pre-condition/post-condition pair for a
given output variable for any given point in time.

A set of test cases is associated with a complete and
consistent set of pre-condition/post-condition pairs that can
be shown to produce MCDC-complete requirements-based
tests. A suite of such test cases, when used to drive an
implementation intended to satisfy these requirements,
provides sufficient evidence that the implementation does
indeed effectively satisfies them, at least from a functional
point of view. The T-VEC system has demonstrated that the
automatic generation of a set of such tests can be
accomplished.

3. Testing a Model With Feedback Semantics

An example of a model that employs both time-wise
non-linear computational feedback elements as well as
state-machine-like elements is the Flow Control model
shown in Figures 1, 2, and 3.

The Flow Control Model design employees a simple
first-order lag filter (temperatureSensor subsystem), applied
to the temperature input data signal In1, and a small
“hysteresis” based threshold detection state machine
(flowControlLogic subsystem). Each of the two primary
subsystems includes a TimeDelay primitive operator block.
This operator is used to retain the value of an intermediate

computation result from one cycle of execution and provide
that same value as an input to the next cycle’s computation.
The TimeDelay block provides a generic closed-loop
feedback mechanism useful for constructing simple state
machines and also for implementing digital signal
processing algorithms such as filters and digital control law
algorithms.

The required operation of the Flow Control model is the
following:

1. The flowControlLogic state machine (Figure 4) is
required to output the value of 0 during the current
cycle if it had output a 0 during the previous cycle
and the value being output from the
temperatureSensor subsystem during the current
cycle is less than or equal to 180 degrees. When
flowControlLogic outputs a 0 during the current
cycle the flowControl system should also output
the value of 0, regardless of the specific value
being input to and output from the
temperatureSensor subsystem.

2. The flowControlLogic state machine is required to
output the value of 1 during the current cycle if the
value output from the temperatureSensor
subsystem during the current cycle is greater than
180 degrees, no matter what value it output during
the previous cycle. While flowControlLogic
outputs the value of 1, the main flowControl
system is required to output a value based on the
value produced by temperatureSensor, after being
scaled through addition and multiplication
operations.

Figure 3 - Flow Control Model

3. The flowControlLogic state machine is required to

output the value of 1 during the current cycle if its
previous cycle output was 1 and the value being
output from the temperatureSensor subsystem
during the current cycle is greater than or equal to
120 degrees. While flowControlLogic outputs the
value of 1, the main flowControl system is
required to output a value based on the value being
output by temperatureSensor after being scaled
through addition and multiplication operations.

4. The flowControlLogic state machine is required to
output the value of 0 during the current cycle if its
previous cycle output was 1 and the current value
being output from the temperatureSensor
subsystem during the current cycle is below 120
degrees. This results in the main flowControl
system outputting the value of 0 during the current
cycle, regardless of the specific value being output
by temperatureSensor.

5. The temperatureSensor subsystem block (Figure
5) is required to provide simple first order filtering.
If the filtered value of temperature is between the
saturation limits of –100.0 to 300.0 degrees, the
output is required to be equal to a “filtered”
temperature value. This “filtering” results in an
averaging effect, preventing spurious “noise”
spikes in the value of temperature from being
passed through to the flowControlLogic state

machine and thus causing it to trigger an undesired
state change. This effect can be seen in a graph of
the dynamic input response to a standard step
input signal in Figure 6.

6. The temperatureSensor subsystem block is
required to saturate at low bound and high bound
value limits. If the filtered value of the temperature
signal input is below –100.0 degrees,
temperatureSensor will output –100.0 degrees (6a).
If the filtered value of the temperature signal input
is above 300.0 degrees, temperatureSensor will
output 300.0 degrees (6b). (Note – in the case of
the overall Flow Control model (Figure 3), the
flowControlLogic state machine will prevent any
value of filtered temperature below 120 degrees
from ever being output from the system.)

From this description of the required operational

semantics of the Flow Control model, it should be clear that
the traditional black-box testing approach that sets input
values, executes the code through one execution cycle,
extracting output values, and comparing the results, would
be inadequate. For example, the dynamic response curve of
Figure 6 clearly indicates that it takes nearly 0.4 of a second
(with a sample period of 0.1 seconds) for the output of
temperatureSensor to rise to from 0.0 to its full value of
100.0 degrees in response to a step input signal of 100
degrees that takes place at t=0.0 in the simulation run.

Figure 4 – FlowControlLogic State Machine

ソフトウェアテストシンポジウム 2005
JaSST’05: Japan Symposium on Software Testing 2005

Figure 5 - First Order Filter

Figure 6 - temperatureSensor Response to Step

Input of 100 Degrees

To verify that a given implementation of this model
correctly provides such a response to a step input signal, one
would need to test the implementation’s response over a
period of time, (i.e. numerous cycles of execution).
Consequently, test cases that include an association between
a single set of input values and a single expected output
value cannot adequately verify such performance. What is
required is a new concept in specification-based software
test generation, test sequence vectors (TSVs).

Informally, a TSV is a test specification that includes all
of the input values for a sequence of execution cycles (i.e.
invocations) of the system being tested. A TSV includes
values for each independent input variable (e.g. temperature,
in the Flow Control model) for each invocation of the model.
It also contains initial condition values for the closed-loop
feedback variables utilized by the first invocation in the
sequence. Lastly, a TSV includes expected output values for
each individual system invocation in the sequence, as well
as the final expected output values for the overall sequence.

4. Summary
This paper has briefly describes some capabilities of the

TAF that support test sequence generation for verification
and analysis of dynamic systems modeled in tools such as
Mathworks’ Simulink. A TSV generation for a 4-step
sequence invocation of the flowRegulator model is
conceptually depicted by Figure 7. This represents 4 sample
periods of execution of the cyclic flowRegulator model. The
presentation will discuss test sequence vector generation
using an example to illustrate both the functionality of the
simple state machine in flowControlLogic as well as the
signal filtering action of the temperatureSensor subsystem.

125.0

130.0

122.0

119.0

87.49
0

117.24
87.49

120.47
117.24

119.42
120.47

Figure 7 – Sequences Includes Feedback of Unit Delay.

5. Process for High Integrity Systems
Depending on the software level of the system being

considered for certification, the decision flow shown in
Figure 8 may be required to provide evidence that the model
is defect free and that the generated tests provide the required
level of code coverage. Details associated with several of
these steps are provided below.

The process is a follows:
� Construct a model in Simulink.
� Check model for defects and iteratively correct the

model if there are defects.

� Construct the code. This can be a manual process or
supported using automatic code generation capabilities
supported by tools like Simulink.

� Generate the tests.
� Execute the tests through instrumented code.
� Check to ensure that the tests provide adequate

coverage (e.g., MC/DC coverage); if adequate coverage
is not achieved, additional tests must be generated.

� Check to ensure that all tests pass.
� Execute tests against target code.
� Check to ensure that all tests pass.
� If tests do not pass, perform test failure analysis, and

correct the code or model.

ソフトウェアテストシンポジウム 2005
JaSST’05: Japan Symposium on Software Testing 2005

Generate
tests

ModelModel

CodeCode

Model
defect?yes

no

Test
instrumented

code
Meets test
coverage?

Test
code

yes
All tests
pass?

no

yes

All tests
pass?

yes
Success

Code
defect?

yes
no

no
Figure 8. Verification Decision Flow

6. References
[1] Blackburn, M. R., Using Models For Test Generation And

Analysis, Digital Avionics System Conference, October, 1998.
[2] Heitmeyer, C., R. Jeffords, B. Labaw, Automated

Consistency Checking of Requirements Specifications. ACM
TOSEM, 5(3):231-261, 1996.

[3] Blackburn, M.R., R.D. Busser, T-VEC: A Tool for
Developing Critical System. In Proceeding of the Eleventh
International Conference on Computer Assurance, June, 1996.

[4] Statezni, David, Industrial Application of Model-Based
Testing, 16th International Conference and Exposition on
Testing Computer Software, June 1999.

[5] Statezni, David. Test Automation Framework, State-based
and Signal Flow Examples, Twelfth Annual Software
Technology Conference, May 2000.

[6] Safford, Ed, L. Test Automation Framework, State-based and
Signal Flow Examples, Twelfth Annual Software Technology
Conference, May 2000.

[7] U.S. Department Of Transportation, Federal Aviation
Administration, Order 8110.83 -Guidelines For The
Qualification Of Software Tools Using RTCA/DO-178B,
April, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

